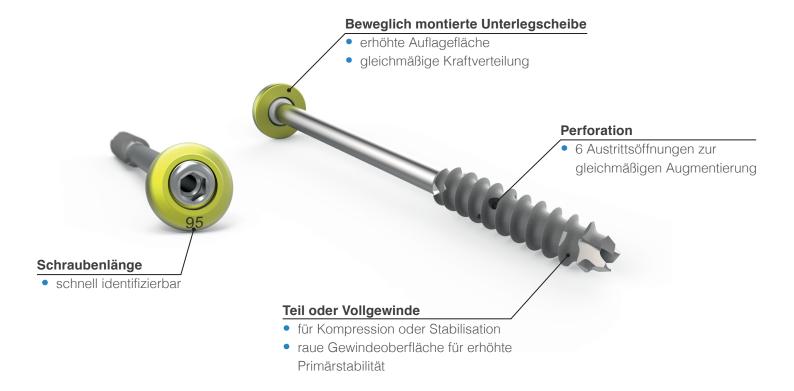


ISG - Schrauben System

Inhaltsverzeichnis

Einleitung	Systemcharakteristiken	2	
	Indikationen	2	
Operationstechnik	Lagerung	3	
	Zugang	3	
	Einbringen des Führungsdrahtes	3	
	Bestimmung der Schraubenlänge	4	
	Einbringen der Schraube	4	
	Vorbereitung Zementapplikation	5	
	Zementapplikation	6	
Produktinformation	Implantat	8	
	Instrumente	9	
	MRT Sicherheitsinformation	10	

Hinweis:


Die nachfolgend beschriebene Operationsanleitung gibt den vom klinischen Berater üblicherweise gewählten Operationsablauf wieder. Jeder Operateur muss jedoch selbst entscheiden, welche Vorgehensweise für den individuellen Fall die besten Erfolgsaussichten bietet.

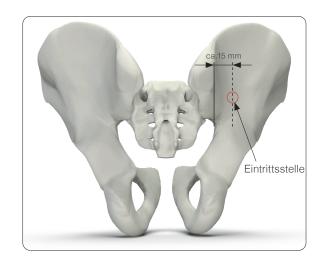
Einleitung

Systemcharakteristiken

- Das ISG Schrauben System kann zur Fixierung von iliosakralen Schraubenosteosynthesen verwendet werden.
- Die Schrauben verfügen über eine beweglich montierte Unterlegscheibe und sind wahlweise mit Teil- oder Vollgewinde verfügbar.
- Die montierte Unterlegscheibe sorgt für eine gleichmäßige Kraftverteilung am Knochen.
- Die Osteosynthesestabilität der ISG Schraube kann bei Bedarf durch Knochenzement erhöht werden.

Indikationen

- Fixation von osteoporotischen und nicht osteoporotischen Frakturen am Becken.
- Arthrose oder Dislokationen im Iliosakral-Gelenk.


Operationstechnik

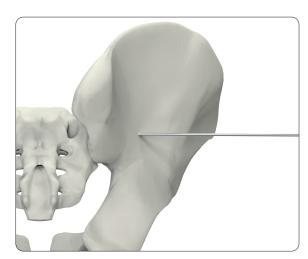
1. Lagerung

- Die Operation erfolgt in Rückenlage auf einem röntgendurchlässigen Operationstisch.
- Der C-Bogen sollte so positioniert werden, dass a.p., Inletund Outletaufnahmen möglich sind.
- Durch mediale Unterpolsterung des Beckens kann der Zieldraht frei in dorsoventraler/lateromedialer Richtung platziert werden.
- Mobile Abdeckung des Beins der zu operierenden Seite.

2. Zugang

- Der Zugang erfolgt durch eine Stichinzision über der geplanten Schraubeneintrittsstelle an S1.
- Diese sollte sich in der Mitte, der um ca. 15 mm versetzten Parallelen zur Linea glutea posterior befinden.

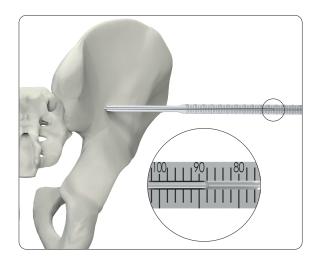
3. Einbringen des Führungsdrahtes


Instrumente

REF 11.90228.300 Kirschnerdraht Ø 2,8 mm

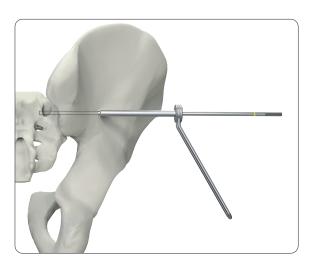
Optional:

REF 08.20120.430 Kirschnerdraht Ø 2,8 mm, L 430 mm


- Der erste Sakralwirbelkörper S1 wird mit Hilfe von einem Bildwandler lokalisiert.
- Der Kirschnerdraht wird im lateralen Strahlengang entsprechend den anatomischen Gegebenheiten bis zur Iliumkortikalis eingebracht.
- Es folgen Inlet- und Outletaufnahmen und ggf. eine Korrektur der Drahtposition.
- Bei korrekter Position wird der Kirschnerdraht durch den S1-Korridor im Wirbelkörper platziert.
- Die korrekte Position des Kirschnerdrahtes wird mittels 3D Scan verifiziert.

Hinweis:

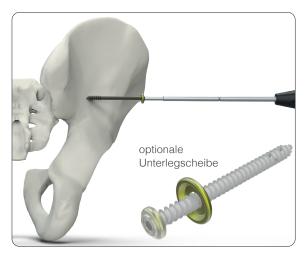
- Der Kirschnerdraht sollte in einem Winkel von ca. 90° zum Frakturspalt verlaufen.
- Die ventrale und dorsale Kortikalis des Sakrums sollte nicht verletzt werden.
- Alternativ kann der Kirschnerdraht unter 3D Navigation eingebracht werden.


3. Bestimmung der Schraubenlänge

Instrumente

REF 08.20100.074 Längenbestimmungsinstrument für

Kirschnerdraht


- Das Längenbestimmungsinstrument wird über den Kirschnerdraht bis zum Knochen vorgeschoben.
- Die Schraubenlänge wird über das Ende des Kirschnerdrahtes abgelesen.
- Bei Verwendung des optionalen Kirschnerdrahtes (REF 08.20120.430) wird die Schraubenlänge über dessen Lasermarkierung abgelesen.

Instrumente

REF 08.20010.154 Spiralbohrer Ø 5,0 mm REF 08.20120.075 Bohrbüchse 5.5

- Mit dem kanülierten Spiralbohrer wird über den Kirschnerdraht durch die Bohrbüchse die Kortikalis aufgebohrt.
- Der Kirschnerdraht sollte nicht komplett überbohrt werden um ein Auslockern des Kirschnerdrahtes zu verhindern.

4. Einbringen der Schraube

Instrumente

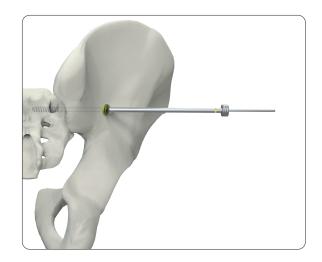
REF 08.20040.173 Schraubendreher

 Die Schraube wird mit dem kanülierten Schraubendreher über den Kirschnerdraht eingebracht.

Hinweis:

- Die Schraube muss soweit eingedreht werden, bis die Unterlegscheibe am Knochen anliegt.
- Optional kann eine größere Unterlegscheibe über das Gewinde der Schraube gesteckt werden, um eine größere Auflagefläche zwischen Schraubenkopf und Beckenkamm zu erreichen.

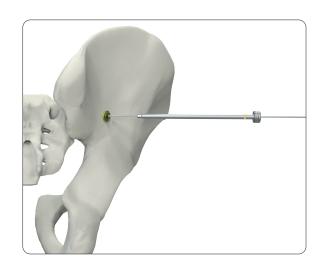
Optional


Bei reduzierter Knochenqualität kann die Implantatverankerung optional durch eine Zementaugmentation verbessert werden.

5. Vorbereitung Zementapplikation

Instrumente

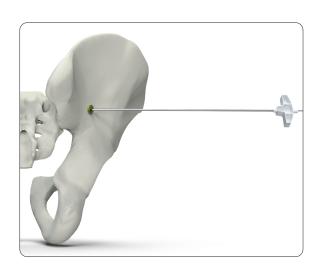
REF 08.20120.422 Austauschhülse Ø 2,8 mm


- Beim Entfernen des Schraubendrehers sollte der Ø 2,8 mm Kirschnerdraht nicht aus der Schraube gezogen werden.
- Anschließend wird die Austauschhülse über den Ø 2,8 mm Kirschnerdraht in den Schraubenkopf gesteckt.

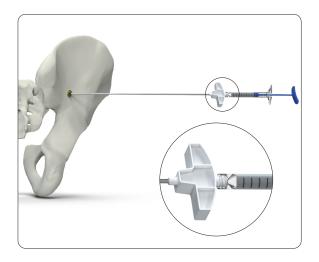
Instrumente

REF 08.20120.421 Führungsdraht Ø 1,6 mm

- Der Ø 2,8 mm Kirschnerdraht wird aus der Austauschhülse herausgezogen.
- Anschließend den Ø 1,6 mm Führungsdraht durch die Austauschhülse und Schraube vorschieben.
- Beim Entfernen der Austauschhülse sollte der Ø 1,6 mm Führungsdraht nicht aus der Schraube gezogen werden.

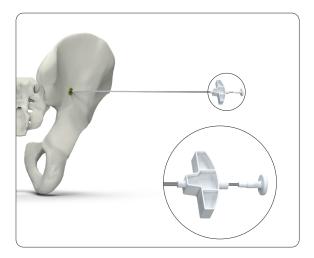

Instrumente

REF SF112601D Zementkanüle


• Die Zementkanüle wird über den Führungsdraht bis in den Schraubenkopf vorgeschoben.

Hinweis:

 Die Informationen des jeweiligen Knochenzementherstellers müssen vor der Zubereitung und dem Gebrauch beachtet werden.



6. Zementapplikation

- Vor der Augmentation wird unter Bildwandlerkontrolle Kontrastmittel durch die Zementkanüle appliziert und die Verteilung im Knochen sowie der Abfluss über präsakrale Venen verifiziert.
- Bei unauffälliger KM-Probe kann die Augmentation über den Luer Lock Anschluss der Zementkanüle durchgeführt werden.
- Das Füllvolumen der Zementkanüle beträgt ca. 1,0 ml.
- In der Regel ist eine Menge von ca. 2-3 ml ausreichend, um die Schraubenspitze wolkenartig zu ummanteln.
- Die Verteilung des Knochenzements sollte während der Augmentation mittels Bildwandler kontrolliert werden.

Instrumente

REF SF112601D

Stößel für Zementkanüle

- Mit dem Stößel kann der Knochenzement aus der Kanüle komplett in die Schraube gedrückt werden.
- Nach der Applikation wird die Zementkanüle zusammen mit dem Stößel entfernt und entsorgt.
- Abschließend erfolgt eine Röntgenkontrolle von a.p. und lateral.

Produktinformation

Implantate

Artikelnummer	Länge	Artikelnummer	Länge
08.03910.050S	50 mm	08.03910.130S	130 mm
08.03910.055S	55 mm	08.03910.135S	135 mm
08.03910.060S	60 mm	08.03910.140S	140 mm
08.03910.065S	65 mm	08.03910.145S	145 mm
08.03910.070S	70 mm	08.03910.150S	150 mm
08.03910.075S	75 mm	08.03910.155S	155 mm
08.03910.080S	80 mm	08.03910.160S	160 mm
08.03910.085S	85 mm	08.03910.165S	165 mm
08.03910.090S	90 mm	08.03910.170S	170 mm
08.03910.095S	95 mm	08.03910.175S	175 mm
08.03910.100S	100 mm	08.03910.180S	180 mm
08.03910.105S	105 mm	08.03910.185S	185 mm
08.03910.110S	110 mm	08.03910.190S	190 mm
08.03910.115S	115 mm	08.03910.195S	195 mm
08.03910.120S	120 mm	08.03910.200S	200 mm
08.03910.125S	125 mm		

ISG - Schraube Ø 7,5 mm, Vollgewinde

•	Gewindedurchmesser:	Ø 7,5 mm
•	Innensechskant:	SW 4,0 mm
•	Durchmesser Unterlegscheibe:	Ø 14,0 mm
•	Material:	Ti6Al4V

Artikelnummer	Länge	Artikelnummer	Länge
08.03912.050S	50 mm	08.03912.130S	130 mm
08.03912.055S	55 mm	08.03912.135S	135 mm
08.03912.060S	60 mm	08.03912.140S	140 mm
08.03912.065S	65 mm	08.03912.145S	145 mm
08.03912.070S	70 mm	08.03912.150S	150 mm
08.03912.075S	75 mm	08.03912.155S	155 mm
08.03912.080S	80 mm	08.03912.160S	160 mm
08.03912.085S	85 mm	08.03912.165S	165 mm
08.03912.090S	90 mm	08.03912.170S	170 mm
08.03912.095S	95 mm	08.03912.175S	175 mm
08.03912.100S	100 mm	08.03912.180S	180 mm
08.03912.105S	105 mm	08.03912.185S	185 mm
08.03912.110S	110 mm	08.03912.190S	190 mm
08.03912.115S	115 mm	08.03912.195S	195 mm
08.03912.120S	120 mm	08.03912.200S	200 mm
08.03912.125S	125 mm		

ISG - Schraube Ø 7,5 mm, Teilgewinde

•	Gewindedurchmesser:	Ø 7,5 mm
•	Innensechskant:	SW 4,0 mm
•	Durchmesser Unterlegscheibe:	Ø 14,0 mm
•	Material:	Ti6Al4V

Optional

Unterlegscheibe für ISG - Schraube

Material: Ti6Al4V

Artikelnummer	Durchmesser	
08.03910.022S	22 mm	

Instrumente

Kirschnerdraht Ø 2,8 mm, Gewindespitze, L 300 mm, Stahl
Führungsdraht Ø 1,6 mm, L 350 mm, Stahl
Spiralbohrer Ø 5,0/2,9 mm, kanüliert, skaliert, Dreibackenbohrfutter, L 295/265 mm
Längenbestimmungsinstrument für
Kirschnerdraht Ø 2,8 mm x 300 mm
Reinigungsdraht Ø 2,8 mm, L 400 mm
Schraubendreher, hex 4,0 mm, kanüliert, L 295/185 mm
995 (E
Austauschhülse Ø 2,8 mm, hex 4,0 mm
Dehrhüches (A.F.F. mm
Bohrbüchse Ø 5,5 mm

SF112601D	Kanüle zur Injektion von Zement	
		4

Optional

08.20120.430 Kirschnerdraht Ø 2,8 mm, Gewindespitze, L 430 mm, Stahl

MRT Sicherheitsinformation

Nicht klinische Tests haben gezeigt, das Schraubensysteme von Marquardt Medizintechnik gemäß der ASTM F2503 bedingt MRT-sicher sind (MR Conditional). Ein Patient mit einem solchen Implantat kann sicher in einem MRT-System gescannt werden, welches folgende Bedingungen erfüllt:

- Zylindrische Öffnung
- Horizontales Magnetfeld (B_a)
- Räumlicher Feldgradient kleiner oder gleich
 - 1.5 T: 23.45 T/m (2345 G/cm)
 - 3.0 T: 11.75 T/m (1175 G/cm)
- Exposition durch hochfrequenten Feldern (HF):
 - HF-Anregung: Zirkular polarisiert (ZP)
 - HF-Sendespule: Ganzkörpersendespule
 - HF-Empfangsspule: Ganzkörperempfangsspule
 - Maximal zulässige gemittelte spezifische Absorptionsrate (SAR) für den Gesamtorganismus: Normaler Betriebsmodus, 2 W/kg.
 - Scandauer und Wartezeit:
 - 1.5 T: 2 W/kg durchschnittlicher Ganzkörper-SAR-Wert für 10min und 55s kontinuierlicher HF (eine Sequenz oder eine Serie von aufeinanderfolgenden Aufnahmen ohne Unterbrechung), gefolgt von einer Wartezeit von 10min und 55s, wenn dieser Grenzwert erreicht ist.
 - 3.0 T: 2 W/kg durchschnittlicher Ganzkörper-SAR-Wert für 7min und 54s kontinuierlicher HF (eine Sequenz oder eine Serie von aufeinanderfolgenden Aufnahmen ohne Unterbrechung), gefolgt von einer Wartezeit von 7min und 54s, wenn dieser Grenzwert erreicht ist.
- Es wird erwartet, dass die Schrauben einen maximalen Temperaturanstieg von 6,2 °C bei 1,5 T und 6,5 °C bei 3 T nach den oben genannten Scanzeiten erzeugen.
- Implantate können Bildartefakte erzeugen. Um Artefakte zu kompensieren, kann eine Anpassung der Scanparameter erforderlich sein. Die von dem Gerät erzeugten Bildartefakte erstreckten sich in nicht klinischen Tests ungefähr 83 mm vom Rand des Implantatsystems bei einer Spin-Echo-Sequenz und 65 mm bei einer Gradienten-Echo-Sequenz jeweils bei 1,5 Tesla.
- Patienten mit uneingeschränkter Thermoregulation unter unkontrollierten Bedingungen oder Patienten mit eingeschränkter Thermoregulation (alle Personen mit beeinträchtigter systemischer oder reduzierter lokaler Thermoregulation) unter kontrollierten Bedingungen (ein Arzt oder eine speziell geschulte Person kann sofort auf hitzebedingten physiologischen Stress reagieren).

Hinweis:

Eine MRT-Untersuchung birgt ein potenzielles Risiko für Patienten mit einem Metallimplantat. Das von einem MRT-Scanner erzeugte elektromagnetische Feld kann mit dem Metallimplantat wechselwirken, was zu einer Verschiebung des Implantats, einer Erwärmung des Gewebes in der Nähe des Implantats, oder anderen unerwünschten Auswirkungen führen kann.

Dieter Marquardt Medizintechnik GmbH

Robert-Bosch-Straße 1 • 78549 Spaichingen, Germany Telefon +49 7424 9581-0 • Telefax +49 7424 501441 info@marquardt-medizintechnik.de • www.marquardt-medizintechnik.de

